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zircon begins between 1525 and 1550 ~ C, the 
degree of  dissociation remaining small and nearly 
constant up to ~1650 ~ C, after which it increases 
rapidly. The results obtained are in excellent 
agreement with those presented by Curtis and 
Sowman [1] an& therefore, as far as our studies 
are concerned, the phase diagram depicted in Fig. 
1 appears more reliable that that of  Fig. 2. 

It must be pointed out that natual zircon con- 
stitutes the basis of  many refractory materials and 
a knowledge of  the parameters of  solid state dis- 
sociation of  zircon is of  importance especially in 
order to avoid the presence of  free silica, which 
lessens the chemical and mechanical properties of 
such materials. 

Ac kn owl edge m ents 
We wish to thank the S.A. Belref (St Ghislain, 
Belgium) who graciously supplied the zircon for 
this work. We also thank Mr M. Vogels, chief of  

technical staff, for carrying out the numerous 
X ray analyses and Mr F. Noel for his collaboration 
in the high temperature experiments. 

References 
1. C.E. CURTIS and H. G. SOWMAN, J. Amer. Ceram. 

Soe. 36 (1953) 190 
2. W.C. BUTTERMAN and W. R. FOSTER, Amer. 

Mineral. 52 (1967) 880. 

Received 30 September 

and accepted 30 October 1975 

M. R. ANSEAU 
J. P. BILOQUE 

P. FIERENS 

Service de Science des Materiaux, 
Universite de l 'Etat a Mons 

Inst i tut  National Interuniversitaire, des Silicates, 
Sols et Materiaux (INISMa), 

7000-Mons,  Belgium 

Poisson contraction in aligned fibre 
composites showing pu/l-out 

When an aligned fibre composite is stretched 
parallel to the fibres tractions arise across the inter- 
face due to the difference in Poisson's ratio 
between fibre and matrix. This Poisson contraction 
is usually simple to deal with in the aligned case, 
because fibres and matrix are subject to the same 
longitudinal strain. However, in a number of  ex- 
periments, e.g. pull-out of  single fibres and other 
methods designed to measure the interfacial shear 
strength, the longitudinal strains in the two com- 
ponents are not the same. In such cases, somewhat 
different results may be obtained depending upon 
whether a single fibre or an array of  fibres is 
considered. This is of  particular importance in con- 
sidering interfacial tractions in composites under- 
going multiple fracture. In this note we wish to 
point out why this is so, and to state succinctly 
some of  the consequences. 

Consider first a single continuous fibre with 
Poisson's ratio uf embedded in matrix with Poisson's 
ratio Vm (Fig. 1), and suppose the whole composite 
is stretched by an axial strain e. When both fibre 
and matrix are isotropic, the elastic problem is 
one of  circular symmetry, and is easily solved 
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exactly [1 ,2 ] .  The interfacial traction is a normal 
stress p given by 

2e (urn - vf) Vm p =  

f km Gmm 

where k is the plane strain bulk modulus and G 

l 

Figure 1 Single fibre imbedded in a matrix. 
�9 1976 Chapman and Hall Ltd. Printed in Great Britain. 
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Figure 2 Fibre pull-out test. 

the shear modulus. The subscripts f and m refer 
to fibre and matrix. V is the volume fraction. The 
sign convention is such that p is positive if the 
central fibre is under compression. 

The sign of the interfaciat traction depends on 
(Urn- vf), since the shear modulus and plane 
strain bulk modulus must be positive, and hence is 
compressive for the case when the fibre Poissons 
ratio is less than that of the matrix. This is usually 
the case with advanced composites. Corre- 
pondingly, if the composite is in compression the 
interfacial traction will be tensile, tending to 
separate the materials. This is the case in the 
method described by Outwater and Murphy for 
measuring the interfacial shear stress [3], where 
the whole composite is subject to compression. 

In the fibre pull-out test, as described by e.g. 
[4], interracial traction is likely to be tensile also 
(see Fig. 2). This occurs because the tensile strain 
in the fibre is larger than that in the matrix. In the 
matrix, the average strain at the surface A in Fig. 2 
is clearly zero, whereas in the fibre it is finite. The 
fibre-matrix interface is, therefore, under tension 
close to the surface independently of the values of 
the Poisson's ratios of the fibre and matrix. 

In both of these methods of attempting to 
measure the interfacial shear strength there is the 
possibility, therefore (in the absence of residual 
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Figure 3 Representation of fibre and matrix in the vicinity 
of a crack. The Poisson contractions have been grossly 
exaggerated for clarity. 

stresses), of an unstable debonding failure at the 
interface. This unstable debond is likely to make 
measurements of interface properties such as the 
interfacial sliding friction stress unreproducible 
and it is known that ~ the values of the shear stress 
opposing relative motion of fibre and matrix are 
not very consistent. They may be consistent if the 
method of making the specimen results in the con- 
traction of the matrix so that there is a normal 
pressure p across the interface and this is sufficiently 
large to prevent the unstable debonding due to the 
Poisson effect. We are of the opinion that when 
such measurements do yield consistent results that 
contraction of the matrix must have occurred prior 
to the pull-out test. The contraction can be due to 
shrinkage on curing or on change of temperature 
or due to other causes. These may all be included 
in the statement that residual stresses must be 
present which place the interface under a normal 
pressure. 

In the absence of residual stresses the interface 
is unstable in a single fibre pull-out test. However, 
this may not be so in a test where a number of 
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fibres are pulled out simultaneously. This case is 
important since the geometry and relative stresses 
involved are similar to those occurring in experi- 
ments on multiple fracture of brittle matrix com- 
posites. 

The situation we envisage in this case is shown 
in Fig, 3 where the matrix in Fig. 1 has cracked on 
a single plane across the specimen. Far from the 
crack, the strain in both fibre and matrix have the 
same value, e. At t~e" erack the fibre has undergone 
an additional strain de where a = (E m Vm)/(E~gf) 
and an additional Poisson contraction vfae. The 
matrix, on the other hand, has zero axial strain at 
the crack face and hence has a strain difference of 
--e with respect to that of both the fibre and the 
matrix remote from the crack. The corresponding 
difference in Poisson contracti6n with respect to 
the unstrained matrix is - P m  e. 

The interfacial traction is clearly tensile at the 
crack, whereas remote from the crack it is com- 
pressive (at least for the case when pf < P m ) "  Note 
that the external shape of the specimen has been 
altered. This change in shape is important because 
if there is an array of fibres, the lateral expansion 
of the matrix on shedding load is restrained by the 
fibres, and hence, despite the local tensile strains 
at the interface, the fibres and matrix may still be 
held in contact. 

If the fibre and matrix are held in contact then 
a frictional force must be developed between them 
on any further extension of the fibres. Multiple 
fractures can then develop as has been described 
for many systems, e.g. glass fibres in cement [5], 
steel wires in epoxy resin [6], carbon fibre in 
cement [7]. If they are not, the specimen will 
break with a single crack transverse to the fibres 
and the fibres will pull out of the matrix, what- 
ever their length. 

To consider this case quantitatively, see Fig. 4. 
In order to assure contact, the expansion of the 
matrix must offset fibre contraction caused by the 
increased stress in the fibres. If the centre-to-centre 
spacing of two fibres far from the crack is R, and 
the composite Poisson's ratio is ue, then the 
condition for contact between fibres and matrix 
to be maintained after cracking is 

(R -- 2r)uee -- 2rau~e >~ 0 (2) 

or, writing V~ = 7rr2/R 2 (which is equivalent to 
assuming that the fibres are arranged in a square 

584 

R 

/ 

. / ~  ~,BRES/ 
/I  

I,_ -I I- ~i 
r - ,  r - i  

2r  2r  

Figure 4 Cracked surface in a composite reinforced with a 

parallel array of  fibres. 

array), we obtain the equivalent condition 

(71.1/2 __ 2 V~/2)v c -- 2 V?/2 ave >~ O. (3) 

For a hexagonal array where we take (r2/R 2) 
(2zr/x/3) = Ve we would have 

27r --2V~/2 Uc--2V~/2au;>JO. (3a) 

If these conditions are not obeyed then in the 
absence of residual stresses in the matrix (e.g. due 
to curing of a polymer resin or cementation or due 
to differential thermal contraction between fibres 
and matrix) multiple fracture will not occur. We 
wish to explore whether or not these conditions 
are obeyed in order to find out which systems can 
show multiple fracture in the absence of any 
residual stress. 

Since the difference between Equations 3 and 
3a is not large we shall use 3 in what follows, refer- 
ring to 3a only when necessary. To explore the 
variation with volume fraction, Equation 3 may be 
rewritten substituting for a, as 

~f~c  2(1 - v 0  
~> O. (4) 

Er~Vf Or V0 m - :2 Vf 

For simplicity, we temporarily neglect the varia- 
tion of composite Poisson's ratio u e with fibre 
volume fraction. This can be justified because of 
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TABLE I 

System 
fibre/ Ef E m Efvc Equation 3 
matrix Vf (GNm -2) vf (GNm -2) p m v~ Em~ f Fs(Vf) Fh(Vf) satisfied 

Equation 3a 
satisfied 

Steel/ 
cement 0.05 200 0.28 20 0.23 0.23 8.2 6.4 5.83 Yes Yes 
Steel/ 
epoxy 0.2 200 0.28 3.5 0.3 0.30 61 4.1 3.54 Yes Yes 
Graphite/ 
cement 0.02 200 0.35 20 0.23 0.23 6.6 9.3 8.54 No No 
Graphite/ 
cement 0.05 200 0.35 20 0.23 0.24 6.9 6.4 5.83 Yes Yes 
Glass/ 
epoxy 0.6 72 0.25 3.5 0.3 0.27 22 4.6 2.91 Yes Yes 
Graphite/ 
glass 0.5 200 0.35 72 0.25 0.30 2.4 4.0 2.88 No No 
Glass/ 
cement 0.05 72 0.25 20 0.23 0.23 3.3 6.4 5.83 No No 
Poly- 
propylene/ 0.1 10 0.3 20 0.23 0.24 0.40 5.0 4.47 No No 
cement 

u c is usually found to be close to the value given by the equation v c = vfVf + ping m for an aligned composite. 

the much greater variation with Vf of  the second 

term which we call Fs(Vf). Since Fs(Vf) increases 
without  bound as Vf approaches zero, it is clear 
that  at very small volume fractions Equation 4 is 

never obeyed in any system. As Vf increases it may 
or may not  be. The minimum value of  Fs(Vf ) 
occurs when Vf = 0.37 when it takes on the value 
3.73. Therefore, Equation 4 can never be obeyed 
in any system unless 

EfPe > 3.73. (5) 
Em Pf 

For the case of  ahexagonal  array, Fs(Vf) is replaced 

by  2(1 --  Vf) 

 VS-] -2v, 

Data for a number of  systems are collected in 

Table I. The first four systems obey criterion 5 
showing that unstable debonding of  the interface 
need not occur in aligned composites provided the 
volume fraction of  fibres is suitably chosen. These 
four systems have also been examined to see 
whether they are consistent with Equation 4 at the 
specific volume fractions shown. All of  them are 
consistent with Equation 4 at these volume 
loadings of  fibre except  for graphite/cement at 
V~ = 0.02 and in each multiple fracture is known 

to occur [6, 7, 9] .  We conclude that in these 
systems, with the exception of  the case cited, the 
occurrence of  matr ix shrinkage is not  a necessary 
condit ion for the observance of  multiple fracture 
at these volume loadings. We observe from the 
Table that  in graphite/cement at V~ = 0.02 a small 
amount  of  matr ix  shrinkage may be required for 
multiple fracture to occur. 

The last entry in Table I is for polypropylene 
fibre in cement. Criterion 5 is not  obeyed.  We 

conclude that multiple fracture will not  be ob- 
served in cement containing aligned polypropy-  
lene fibres at any volume loading since the fibre 
matr ix interface will debond in an unstable 
fashion. Multiple fracture could only be observed 
if substantial shrinkage of  the cement occurs so 
that  the fibre is gripped. The reason for this is the 
small Young's modulus of  the fibre and its large 
Poisson's ratio. 

The case of  g l a s s / c e m e n t -  the penult imate 
entry in the Table, is very interesting. Multiple 
fracture is known to occur [5].  The criteria are 
not  obeyed,  which indicates, if the present ideas 
are correct,  that the interfaces between fibre and 
matrix would debond unstably. However, they are 
very close to being obeyed and our theory is ob- 
viously (quantitatively) approximate.  We have 
assumed a regular square array of  fibres. For  a 
hexagonal array the condit ion analogous to 
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criterion 5 yields 

Efuc 
EmUf > 2.88 (6) 

instead of 3.73. The value for glass/cement in 
Table I is 3.3. Further, for the particular volume 
fraction of 5%, which is a technically interesting 
one, Equation 3 is close to being obeyed and the 
value of Poisson's ratio for cement is not known 
with accuracy. We believe these results indicate 
that in glass-reinforced cement a small amount of 
shrinkage of the cement will be necessary in order 
to observed multiple fracture or else that the inter- 
face must be capable of sustaining a tensile traction 
and be tough enough to resist debonding in order 
that multiple fracture be consistently observed. 
The entry in the Table for graphite fibres in glass 
indicates that our criterion is not obeyed. We 
know of no experiments in pure tension on this 
system but there is some evidence for multiple 
fracture in bend tests [8]. 

The previous discussion was limited to con- 
sideration of arrays of parallel fibres perpendicular 
to the crack face. When fibres are randomly 
oriented in the composite, some fibres will intersect 
the crack obliquely as in Fig. 5. The mechanisms 
in this case are more complex. As in the case when 
fibres are axial, oblique fibres will neck down 
locally because of the increase in strain, and the 

matrix will tend to expand laterally when the fibres 
debond, although the oblique fibres will restrict 
the displacement. In addition, the axial separation 
of the crack faces tends to force the fibre against 
the matrix which helps to maintain contact. For 
these reasons the presence of residual stresses in 
the matrix may not be necessary in order to observe 
multiple fracture. This case was studied by Morton 
and Groves [10]. 

In conclusion, we have considered some aspects 
of Poisson contraction in composites reinforced 
with aligned continuous fibres which are rigorously 
straight sided and parallel. We found that the effect 
of the Poisson contraction can be different for 
single fibres and arrays of fibres in the same matrix 
material. That is the important conclusion. Experi- 
ments are conducted on arrays of fibres which are 
not necessarily completely smooth so that relative 
motion of fibres and matrix may be determined by 
asperities at the interface. Nevertheless, the effects 
we predict must be taken into account in any exact 
theory. The analysis predicts that in the absence of 

shrinkage stresses, interfacial debonding will prob- 
ably tend to propagate unstably in glass/cement 
composites with low fibre volume fractions. Inter- 
faces in steel/cement, graphite/cement and in resin- 
matrix composites reinforced with high volume 
fractions of fibres such as glass, and steel, are 
predicted to be mechanically stable. 

Figure 5 Fibre intersecting crack at an oblique angle. 
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Spherical and cyl indrical models for craze 
growth 

In a previous paper [1] we applied the technique 
of  finite element analysis to the problem of failure 
by yielding of  a uniform cylindrical void system, 
taken as a model for the process of  craze growth in 
plastics. However, the smallest voids formed during 
the initiation of  crazing often seem to have a 
spherical rather than a cylindrical form [2, 3] .  We 
have, therefore, repeated some of our previous 
calculations using a spherical hole model to estab- 
lish whether or not there is a significant difference 
in the conclusions reached. The new model simply 
substitutes a three-dimensional system of spherical 
holes for the two-dimensional cylindrical voids 
used in the previous paper [1].  

A single module of  the spherical void array is 
illustrated in Fig. 1 where the voids are of  radius a 

and their centres are spaced at an equal distance of  
2(a + d) in each of  the x, y and z directions. The 
loading of  prime interest is a hydrostatic tensile 
loading which can be accomplished by prescribing 
displacements A on the three facesx = a + d , y  = 
a + d  and z = a  + d  in the x, y and z directions 
respectively. The three faces defined by x = 0, 
y = 0 and z = 0 are restrained from moving in the 

x, y and z directions respectively. 
Initially, two void volume fractions were con- 

sidered corresponding to d/a = 0.5 and d/a = 0.1. 
In each case the solution was performed using 1,8 
and 27 three-dimensional quadratic elements in 
turn and the 8 element mesh employed is illustrated 
in Fig. lb. A Van Mises yield criterion was assumed 
and the material properties, listed in Fig. la, are 
the same as those employed in [1].  The variation 
of  the total reactive force on any face with increas- 
ing prescribed displacement is shown in Fig. 2a 
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Figure 1 Illustration of spherical void model. (a) Module analysed; (b) quadratic isoparametric element mesh employed. 
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